Open HSI menu
Subscribe Login

Home / Articles and Press Releases / Article / Portable Gas Detection

CATEGORIES

  • Latest Issue
  • Above The Neck Protection
  • Chemical Protection
  • Confined Space
  • Construction
  • Emergency Procedures
  • Energy, Oil and Mining Industries
  • Eye Protection
  • Fall Protection
  • Gas Detection
  • Hand Protection
  • Hazardous and Explosive Atmospheres
  • Health and Safety Awareness
  • Hearing Protection
  • Heat and Flame
  • Lighting and ATEX
  • Noise Monitoring
  • Personal Protective Equipment
  • Respiratory Protection
  • Safety Footwear
  • Safety Technology
  • Safety Training
  • Slips, Trips and Falls
  • Wellbeing at Work
  • Working at Height
  • Working Rights

MORE

  • Press Releases
  • Events
  • Videos
  • Webinars
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact
Open HSI menu
Subscribe

Home / Articles and Press Releases / Article / Portable Gas Detection

CATEGORIES

  • Latest Issue
  • Above The Neck Protection
  • Chemical Protection
  • Confined Space
  • Construction
  • Emergency Procedures
  • Energy, Oil and Mining Industries
  • Eye Protection
  • Fall Protection
  • Gas Detection
  • Hand Protection
  • Hazardous and Explosive Atmospheres
  • Health and Safety Awareness
  • Hearing Protection
  • Heat and Flame
  • Lighting and ATEX
  • Noise Monitoring
  • Personal Protective Equipment
  • Respiratory Protection
  • Safety Footwear
  • Safety Technology
  • Safety Training
  • Slips, Trips and Falls
  • Wellbeing at Work
  • Working at Height
  • Working Rights

MORE

  • Press Releases
  • Events
  • Videos
  • Webinars
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact

CATEGORIES

  • Article
  • Press Release
  • Above The Neck Protection
  • Chemical Protection
  • Confined Space
  • Construction
  • Emergency Procedures
  • Energy, Oil and Mining Industries
  • Eye Protection
  • Fall Protection
  • Gas Detection
  • Hand Protection
  • Hazardous and Explosive Atmospheres
  • Health and Safety Awareness
  • Hearing Protection
  • Heat and Flame
  • Lighting and ATEX
  • Noise Monitoring
  • Personal Protective Equipment
  • Respiratory Protection
  • Safety Footwear
  • Safety Technology
  • Safety Training
  • Slips, Trips and Falls
  • Wellbeing at Work
  • White Papers
  • Working at Height
  • Working Rights

Article

Portable Gas Detection

By David McLafferty

| Read Bio

Published: October 01st, 2008

Share this article

Minimising workers risk to atmospheric hazards

There are a large number of occupations that require the entry to a confined space. A definition of a confined space varies in the legislation from one country to another, but the differences in effect are slight.

In essence it is a space that is large enough to enter and perform work but has limited or restricted means for entry and exit and is not designed for continuous human occupancy. Anyone entering such a space by virtue of its enclosed nature is at increased risk of being overcome by toxic fumes, vapour and oxygen deficiency, drowning, extreme temperature or explosion.

Some areas that fall within the definition of a confined space may only be dangerous occasionally, for example during certain maintenance activities or when containing hazardous cargo. The subject of this article is to outline atmospheric hazards with the options available to minimise worker risk.

Gas hazards within a confined space

A hazard within a confined space is of special occurrence, this means that it is a combination of the place of work being confined and the presence of substances and conditions that when taken together increase the risk of injury to the worker. There are a number of common gases that need to be considered in most confined space applications, as well as additional hazards unique to a specific area of work. The nature of the risk depends on the gas that is present, in general we divide gas hazards into 3 main categories; flammable (or combustible), toxic and asphyxiant. The common gases monitored by portable gas detectors are flammable, carbon monoxide, hydrogen sulphide and oxygen depletion / enrichment.

Monitoring for flammable gases

Flammable gases present an obvious risk of explosion, typical examples are methane, hydrogen, propane and pentane although there are many more. Flammable gas is monitored in the Lower Explosive Limit (LEL) range, this is the minimum concentration needed for ignition. Typically LEL alarms are set at 10% or 20% LEL giving the worker an early warning of rising flammable gas levels. It is important that the instrument has been calibrated with or near to the flammable gas being monitored. For example, methane calibration when danger from leaks from natural gas pipelines. If an instrument is being used across a site or location with varying flammable gas risk a flammable gas selector feature is valuable. This feature allows the user to change the calibration factor meaning the instrument is suitable for monitoring a different flammable risk other than what it has been calibrated for.

Detection of toxic gases

Toxic gases are directly harmful to health, mainly by damaging tissue or causing a metabolic reaction in the human body. Usually the hazard is present at much lower concentrations from flammable gases. Due to this the concentration is measured in parts per million (ppm). The effects of exposure to toxic gas can be instantaneous or long-term where prolonged exposure in sufficient concentrations is damaging to health. The way these gases are measured and monitored, therefore, is more complex than flammable gases. Values over time must be monitored and often records of exposure maintained. The exposure over time value is known as the Time Weighted Average (TWA). Two time periods are used, these are Short Term Exposure Limit (STEL) which is averaged over a 15 minute period, and the Long Term Exposure Limit (LTEL) which is averaged over an 8 hour period.

The levels are based on current scientific knowledge and reviewed by bodies such as the HSE in the UK. This monitoring is unique for the individual using the instrument. This means that if an instrument is being used by more than 1 user then there should be a feature allowing for this to be recorded. This will keep the monitoring accurate for each different user. The uploading of recorded data to a PC or laptop should be available and simple.

4-gas variety monitoring instruments

In most confined spaces the presence of hydrogen sulphide and carbon monoxide cannot be ruled out. It is safer to be cautious and include for the monitoring of these gases on a portable instrument. This is the reason why most portable gas instruments sold are of the 4-gas variety, H2S, CO, O2 and flammable. Hydrogen Sulphide is produced by rotting organic material and also from crude oil and oil products. Carbon Monoxide is a by-product of incomplete combustion it is commonly created in heating systems and motor vehicles. Obviously there are many more toxic risks such as ammonia, chlorine, nitrogen dioxide and sulphur dioxide. These are site and industry specific but it is important to consider the ability to monitor uncommon gases when selecting instrument type. Questions such as ‘Can I add a different sensor to the instrument at a later date?’ and ‘Would this be a simple process?’ should be asked. Similarly, if a sensor is no longer required it should be easy to remove the sensor thus reducing service costs. A flexible instrument could be crucial in saving downtime and money if a new monitoring requirement crops up.

When the toxic risk is from a reactive gas such as ammonia, chlorine or nitrogen dioxide it is important for worker safety to realise that it is more difficult to get an adequate sample to the sensor. These gases are easily absorbed into sample line and internal components of the instrument. When the detection of a reactive gas is required, a significant feature to look for in an instrument is assisted diffusion. This uses an integrated pump on a lower sample level to help draw the ‘sticky’ gas to the sensor. This increases response time and lessens the risk of higher levels of gas being present without the user being aware.

Detection of toxic gases

Often the hazard is not just the flammability or toxicity of the gas but its ability to displace oxygen in the atmosphere. Gas purging, where a gas such as nitrogen is used to prevent the possibility of an explosive atmosphere by removing hydrocarbons and also oxygen, will by its nature create an oxygen deficiency. Biological processes such as occurring within sewers and fermentation in silos or a chemical action such as rust formation can also lead to oxygen deficiencies.

Oxygen is the priority measurement in confined spaces since it is impossible to sustain life without it and other hazards such as flammability are less relevant without the basic safety measurement. Oxygen is not flammable on its own, however, when an atmosphere becomes oxygen enriched, the flammability of ordinary materials increases, for example, cotton or grease. This is the reason that a lower and upper alarm level is set on the oxygen range, these typically being 19.5% and 23.5%.

It is worth noting that an instrument designed for confined space work should not be used during inerting operations. It is a common misconception that all gas detectors are the same and can be used for any operation where gas or vapours may exist. This is not true and can be dangerous. An LEL measurement is an indication of the flammability of the atmosphere, this being accurate for the gas the instrument has been calibrated on. Gas is only flammable in the correct gas / oxygen mix. Removing the oxygen, such as during inerting operations, means that the gas is no longer flammable, therefore, no longer having a relevant explosive limit. A confined space monitor instrument will, therefore, give a zero indication of LEL but it is still likely that flammable gas is still present. This is a potential hazard as the introduction of oxygen could then produce a flammable atmosphere. It is essential that an instrument suitable for inerting operations is used, typically monitoring the % Volume level of the hydrocarbon along with oxygen content.

The use of a portable gas detector, with appropriate action taken if dangerous levels of gases are detected, can help prevent worker injury. As the atmospheric conditions within a confined space are unknown, it is important that a check is carried out prior to entry to ascertain current conditions. The most reliable method of doing this is to use sampling line and the integrated electric pump of the instrument to draw a sample from the area to the instrument. This allows the worker to view the conditions from a safe area and determine whether a toxic, explosive or oxygen (too high or low) danger exists. It is important to take samples from the top, middle and bottom of the area to locate and quantify varying layers of gases and vapours.

The density of a gas / vapour is a measure of how ‘heavy’ it is relative to air. A density of greater than 1, the gas will fall. A density of less than 1, the gas will rise. It is worth noting that the density of methane is 0.55, carbon monoxide 0.97 and hydrogen sulphide 1.19. If the instrument alarm is activated indicating a hazard during a pre-entry check, company procedures should then be followed to decide on appropriate action. This could mean the requirement for air extraction, a ventilation system or the need for breathing apparatus.

The importance of using the correct detector

It is important when selecting an appropriate portable gas detector to match the instrument specification with the intended application. Confined spaces exist in various sizes and depths. For example, a tank, vessel, sewer, ship hold or deep trench may require pre-entry checking to depths of 30 – 40 metres. It would be very time consuming if using an instrument with no pump to hand aspirate a sample from this depth; likewise using an instrument with a weak pump. Not only is time being wasted but also an element of danger is introduced. The worker can become confident on the safety of the area without the instrument being exposed to the actual atmosphere of the area.

After confirming that the area is safe to enter it is necessary to continue to monitor whilst work is ongoing. Where the instrument has an integrated pump, it is important that the pump can be switched off when continually monitoring. This combination of pumped operation and, when suitable, diffusion operation increases the instrument battery life. Within the confined space the instrument is now being used to alert the worker to atmospheric changes that could be hazardous. It is possible that the area can become hazardous due to leakages, vapour release or the worker disturbing sediment thus creating a vapour plume.

The instrument should have audible and visual alarms that are clearly audible and visible despite often being used in harsh conditions. A good portable gas detector will mean that any alarm event is almost impossible to miss, having bright LEDs visible through 3600 and ultra-loud audible alarms capable of being heard over any machinery being used.

The alarm set points for the relevant gas or vapour being detected should be set in accordance with national regulatory levels or to company standards. These are set at time of instrument manufacture and should only be able to be changed via a secure password protected menu system. This means that only competent personnel can alter alarms.

As indicated, there are particular features of an instrument for confined space use that allows for easier, more accurate monitoring. As important is the actual instrument construction. The instrument should fit comfortably into the hand, onto the belt and into harnesses. It should be lightweight and not be too bulky. The instrument body should be tough and robust, easily surpassing minimum drop height tests to ensure years of use often in harsh environments. All of these available features mean that a purchaser or user should demand the highest specification available in a confined space monitor. Price alone should not be the determining factor. Consideration should be given to the flexibility and suitability of the instrument to the intended use. Flexibility in that it is capable of switching to different hydrocarbon monitoring without re-calibration or sensor change. It should also be possible to add / remove sensors without downtime or a complicated costly process. The suitability for use is key; can multi-users be accommodated through time weighted average monitoring?; data uploading for review and analysis should be simple; a sufficiently strong pump to draw a sample from the required depth is significant and ultra loud and bright alarms be the norm. Remember, safety is not cheap, it is priceless.

Published: 10th Jan 2008 in Health and Safety International

Share this article

ABOUT THE AUTHOR

David McLafferty

Connect with David McLafferty

POPULAR POSTS BY David McLafferty

Article

Portable Gas Detection

Get email updates

Sign up for the HSI newsletter

Keep up-to-date through the power of email with Europe's largest audited safety magazine - delivering the latest news and products to satisfy all your occupational safety needs.

  • This field is for validation purposes and should be left unchanged.

FEATURED ARTICLES

Article

 Thameslink Traffic Management Programme

Press Release

‘Working At Height’ Remains Biggest Danger

Press Release

“Uncertainty and Ignorance” Risks More Asbestos Deaths

Advertisement

SOCIAL MEDIA

HSI on Facebook

https://www.facebook.com/HSIMagazine/

Advertisement

SOCIAL MEDIA

HSI on Twitter

hsimagazine HSI Magazine @hsimagazine ·
19h

Why should you sign up for our gas detection summit?

Don't miss out, sign up now!
https://us06web.zoom.us/webinar/register/7316793994535/WN_m7lbVevnQRiAHDK6KkxX-g

#hsimagazine #GasDetectionSummit #summit #gasdetection #gassafety #speakerlaunch

Reply on Twitter 1641727038980751361 Retweet on Twitter 1641727038980751361 Like on Twitter 1641727038980751361 Twitter 1641727038980751361

Advertisement

SUBSCRIBE

Stay up to date with our newsletter

    • Keep up-to-date with Europe’s largest audited safety magazine

 

    • Delivering the latest news and products to satisfy all your occupational safety needs

 

This field is for validation purposes and should be left unchanged.

Subscribe

SUBSCRIBE TO HSI MAGAZINE

5 reasons to subscribe to our digital and print package

  • Stay up to date from anywhere in the world, with instant access to the latest issue straight from your phone, tablet or laptop.
  • Trust that you’re getting the best content from our range of internationally accredited authors.
  • Get full access to our archives and see how occupational safety has evolved with us over the years.
  • Enjoy our monthly newsletter curated with up-to-the-minute news and a selection of editor’s top picks.
  • Hot off the press and straight to your door – look forward to your own glossy copy of HSI, delivered five times a year
Subscribe View Subscription levels

STAY SAFE & INFORMED

Subscribe to the best health & safety articles, news, products and regulations

Find out more

Stay up to date with our newsletter

  • This field is for validation purposes and should be left unchanged.

ABOUT

  • About HSI International
  • Advertise
  • Contact Us

YOUR ACCOUNT

Sign In Register Account Subscribe to HSI

RESOURCES

Request Media Pack

CONNECT

ACCREDITATIONS

Copyright Bay Publishing 2023. All Rights reserved.

Designed & Built by:
  • Terms & Conditions
  • Privacy Policy
  • Cookie Policy
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT