Open HSI menu
Subscribe Login

Home / Articles and Press Releases / Article / Improving Road Safety

CATEGORIES

  • Latest Issue
  • Above The Neck Protection
  • Chemical Protection
  • Confined Space
  • Construction
  • Emergency Procedures
  • Energy, Oil and Mining Industries
  • Eye Protection
  • Fall Protection
  • Gas Detection
  • Hand Protection
  • Hazardous and Explosive Atmospheres
  • Health and Safety Awareness
  • Hearing Protection
  • Heat and Flame
  • Lighting and ATEX
  • Noise Monitoring
  • Personal Protective Equipment
  • Respiratory Protection
  • Safety Footwear
  • Safety Technology
  • Safety Training
  • Slips, Trips and Falls
  • Wellbeing at Work
  • Working at Height
  • Working Rights

MORE

  • Press Releases
  • Events
  • Videos
  • Webinars
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact
Open HSI menu
Subscribe

Home / Articles and Press Releases / Article / Improving Road Safety

CATEGORIES

  • Latest Issue
  • Above The Neck Protection
  • Chemical Protection
  • Confined Space
  • Construction
  • Emergency Procedures
  • Energy, Oil and Mining Industries
  • Eye Protection
  • Fall Protection
  • Gas Detection
  • Hand Protection
  • Hazardous and Explosive Atmospheres
  • Health and Safety Awareness
  • Hearing Protection
  • Heat and Flame
  • Lighting and ATEX
  • Noise Monitoring
  • Personal Protective Equipment
  • Respiratory Protection
  • Safety Footwear
  • Safety Technology
  • Safety Training
  • Slips, Trips and Falls
  • Wellbeing at Work
  • Working at Height
  • Working Rights

MORE

  • Press Releases
  • Events
  • Videos
  • Webinars
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact

CATEGORIES

  • Article
  • Press Release
  • Above The Neck Protection
  • Chemical Protection
  • Confined Space
  • Construction
  • Emergency Procedures
  • Energy, Oil and Mining Industries
  • Eye Protection
  • Fall Protection
  • Gas Detection
  • Hand Protection
  • Hazardous and Explosive Atmospheres
  • Health and Safety Awareness
  • Hearing Protection
  • Heat and Flame
  • Lighting and ATEX
  • Noise Monitoring
  • Personal Protective Equipment
  • Respiratory Protection
  • Safety Footwear
  • Safety Technology
  • Safety Training
  • Slips, Trips and Falls
  • Wellbeing at Work
  • White Papers
  • Working at Height
  • Working Rights

Article

Improving Road Safety

By Universitat Politècnica de Catalunya

| Read Bio

Published: January 18th, 2017

Share this article

Researchers belonging to the Concrete Structure Technology research group of the Universitat Politècnica de Catalunya (UPC), along with the companies GIVASA, SERVIÀ CANTÓ, EIFFAGE INFRAESTRUCTURAS and Applus+ IDIADA, have designed and built a prototype of a concrete crash barrier for interurban roads that, in comparison with the concrete barriers already in place, reduces the degree of severity of vehicle impact in accidents and therefore of injury to vehicle occupants. In addition to improving safety for vehicle occupants, the new crash barrier design, the first of its kind in Europe, is cheaper and more environmentally friendly than existing solutions because it reduces the amount of concrete needed by up to 10% and prevents up to 6.6 tonnes of CO2 emissions for every kilometre of barrier.

In addition to improving safety for vehicle occupants, the new crash barrier design, the first of its kind in Europe, is cheaper and more environmentally friendly than existing solutions because it reduces the amount of concrete needed by up to 10% and prevents up to 6.6 tonnes of CO2 emissions for every kilometre of barrier.

Another advantage of the new in situ concrete crash barrier is that, compared with other vehicle restraint systems, and thanks to its high resistance to impact, it reduces maintenance costs during its useful life, estimated to be one hundred years. The barrier prototype has been installed on the C-33 (in Mollet del Vallès) and AP-7 (at the Nus del Papiol) motorways, the A-14 dual carriageway (in Lleida), the C-58 road (in Vacarisses and Castellbell i el Vilar), the Fernando Reig bridge on the N-340 (in Alcoy, Alicante) and the M-506 (in Chapinería, Madrid). It is expected to be built in 2017 on the C-55 (in Collbató), the N-IIz (in Castellolí), the B-112 (also in Collbató) and the BV-4025 (in Cercs).

Roadway departure crashes are the most common road accident and their consequences are the most severe. In 2015, there were 1,126 fatalities and 4,843 people were injured on interurban roads in Spain. On this type of road, the highest percentage of fatalities, 40%, occurred in accidents in which the vehicle left the road, according to the Directorate General of Traffic (DGT). In the case of Catalonia, in the same year there were 176 fatalities and 891 people were seriously injured on interurban roads; 36% of these fatalities were due to roadway departures, according to the Catalan Traffic Service (SCT).

Crash barriers or restraint systems designed to reduce this kind of accident can be made of metal, precast or in situ concrete, masonry and even wood. These systems serve to “restrain” vehicles (keep them from crossing over into the opposite lane), to redirect them and as shock absorbers in the case of impact.

At present, only metal and precast concrete crash barriers meet impact severity index criteria in European standard EN 1317, which distinguishes three types of crash barrier (A, B and C), as only types A and B are allowed in Spain. However, metal crash barriers have several drawbacks, such as the fact that they have to be repaired after an accident, which has an effect on traffic, and their high maintenance costs.

In the framework of the BAHORIS project, funded by the Centre for the Development of Industrial Technology (CDTI), the UPC’s Concrete Structure Technology research group and the companies GIVASA, SERVIÀ CANTÓ, EIFFAGE INFRAESTRUCTURAS and Applus+ IDIADA designed a new, continuous in situ concrete crash barrier, for two reasons: to ensure the type B severity index criteria are met and thus limit the consequences of an impact on the driver of a vehicle, and to build it more sustainably by reducing material consumption, improving its structural response and making maintenance, or replacement in the case of accidents, easier.

A more suitable structure

The solution developed, which has been certified as meeting conditions for type B impact severity, achieves these initial aims, according to researchers at the Barcelona School of Civil Engineering. Specifically, the barrier reduces the severity of injuries in accident victims after they crash into the barrier in comparison with existing concrete barriers. This improvement has been achieved in the following ways: first, by optimising the length of transitions (i.e. the spaces between one barrier and the next), and second, by adjusting the material (reinforced concrete) and adapting direct contact or friction with the ground. The shape of the barrier has also been improved to ensure that vehicles can be redirected gradually and smoothly so that drivers do not lose control of the vehicle or swerve into opposite or adjacent lanes.

As for the material it is made of, the new barrier needs between 3% and 10% less concrete than other, similar materials. This leads to a decrease of between 13 and 55 tonnes of concrete and between 1.60 and 6.6 tonnes of CO2 emissions for every kilometre of the barrier that is built.

The new barriers are more competitively priced than precast concrete ones. They also require virtually no maintenance, because they do not need to be removed after a car accident, which means there are no disruptions to traffic when they need to be repaired, unlike metal barriers. Indeed, 10% of road congestion problems are directly related to the maintenance and replacement of barriers, according to estimates by the Federal Highway Agency (FHWA) in the United States.

Work on the new barrier is the subject of Dr Jordi Cañas’s PhD thesis, which was supervised by the professors Antonio Aguado and Albert de la Fuente at the UPC’s Department of Civil and Environmental Engineering.

Simulation and testing

Standardised impact tests were performed on various barrier configurations that had previously been simulated using advanced numerical models at the facilities of Applus+ IDIADA. This reduced the number of full-scale tests, because the simulation results enabled geometric and mechanical variables to be analysed beforehand.

The impact of buses and heavy goods vehicles was also tested to check the barrier’s containment capacity, and initial results were excellent. The project has the support of the RACC.

Share this article

ABOUT THE AUTHOR

Universitat Politècnica de Catalunya

The Universitat Politècnica de Catalunya · BarcelonaTech (UPC) is a public institution dedicated to higher education and research, specialised in the fields of architecture, engineering and technology.

In a highly creative context, the UPC’s research, teaching and management projects are based on the principles of freedom, justice, democracy, solidarity, cooperation, sustainability, efficiency, transparency and social responsibility. They also reflect the University’s commitment to the environment and to change.

Visit Website

POPULAR POSTS BY Universitat Politècnica de Catalunya

Crash barrier 39 0 800 1422 - hsi -

Article

Improving Road Safety

Get email updates

Sign up for the HSI newsletter

Keep up-to-date through the power of email with Europe's largest audited safety magazine - delivering the latest news and products to satisfy all your occupational safety needs.
  • This field is for validation purposes and should be left unchanged.

FEATURED ARTICLES

Article

 Thameslink Traffic Management Programme

Press Release

‘Working At Height’ Remains Biggest Danger

Press Release

“Uncertainty and Ignorance” Risks More Asbestos Deaths

Advertisement

SOCIAL MEDIA

HSI on Facebook

https://www.facebook.com/HSIMagazine/

Advertisement

SOCIAL MEDIA

HSI on Twitter

hsimagazine HSI Magazine @hsimagazine ·
25 Jan

Global gas sensing leader @ionscience has today formally announced the addition of a high-specification Particulate Matter (PM) sensor to its portfolio.

Read all about this exciting addition!
https://www.hsimagazine.com/press-release/worlds-best-performing-particulate-matter-pm-sensor-now-available-from-ion-science-ltd/

#hsimagazine #ionscience #particulatematter

Reply on Twitter 1618280038557970432 Retweet on Twitter 1618280038557970432 Like on Twitter 1618280038557970432 Twitter 1618280038557970432

Advertisement

SUBSCRIBE

Stay up to date with our newsletter

    • Keep up-to-date with Europe’s largest audited safety magazine

 

    • Delivering the latest news and products to satisfy all your occupational safety needs

 

This field is for validation purposes and should be left unchanged.

Subscribe

SUBSCRIBE TO HSI MAGAZINE

5 reasons to subscribe to our digital and print package

  • Stay up to date from anywhere in the world, with instant access to the latest issue straight from your phone, tablet or laptop.
  • Trust that you’re getting the best content from our range of internationally accredited authors.
  • Get full access to our archives and see how occupational safety has evolved with us over the years.
  • Enjoy our monthly newsletter curated with up-to-the-minute news and a selection of editor’s top picks.
  • Hot off the press and straight to your door – look forward to your own glossy copy of HSI, delivered five times a year
Subscribe View Subscription levels

STAY SAFE & INFORMED

Subscribe to the best health & safety articles, news, products and regulations

Find out more

Stay up to date with our newsletter

  • This field is for validation purposes and should be left unchanged.

ABOUT

  • About HSI International
  • Advertise
  • Contact Us

YOUR ACCOUNT

Sign In Register Account Subscribe to HSI

RESOURCES

Request Media Pack

CONNECT

ACCREDITATIONS

Copyright Bay Publishing 2023. All Rights reserved.

Designed & Built by:
  • Terms & Conditions
  • Privacy Policy
  • Cookie Policy
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT