Open HSI menu
Subscribe Login

Home / Articles and Press Releases / Article / Detecting Hazardous Gases

CATEGORIES

  • Latest Issue
  • Above The Neck Protection
  • Chemical Protection
  • Confined Space
  • Construction
  • Emergency Procedures
  • Energy, Oil and Mining Industries
  • Eye Protection
  • Fall Protection
  • Gas Detection
  • Hand Protection
  • Hazardous and Explosive Atmospheres
  • Health and Safety Awareness
  • Hearing Protection
  • Heat and Flame
  • Lighting and ATEX
  • Noise Monitoring
  • Personal Protective Equipment
  • Respiratory Protection
  • Safety Footwear
  • Safety Technology
  • Safety Training
  • Slips, Trips and Falls
  • Wellbeing at Work
  • Working at Height
  • Working Rights

MORE

  • Press Releases
  • Events
  • Videos
  • Webinars
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact
Open HSI menu
Subscribe

Home / Articles and Press Releases / Article / Detecting Hazardous Gases

CATEGORIES

  • Latest Issue
  • Above The Neck Protection
  • Chemical Protection
  • Confined Space
  • Construction
  • Emergency Procedures
  • Energy, Oil and Mining Industries
  • Eye Protection
  • Fall Protection
  • Gas Detection
  • Hand Protection
  • Hazardous and Explosive Atmospheres
  • Health and Safety Awareness
  • Hearing Protection
  • Heat and Flame
  • Lighting and ATEX
  • Noise Monitoring
  • Personal Protective Equipment
  • Respiratory Protection
  • Safety Footwear
  • Safety Technology
  • Safety Training
  • Slips, Trips and Falls
  • Wellbeing at Work
  • Working at Height
  • Working Rights

MORE

  • Press Releases
  • Events
  • Videos
  • Webinars
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact

CATEGORIES

  • Article
  • Press Release
  • Above The Neck Protection
  • Chemical Protection
  • Confined Space
  • Construction
  • Emergency Procedures
  • Energy, Oil and Mining Industries
  • Eye Protection
  • Fall Protection
  • Gas Detection
  • Hand Protection
  • Hazardous and Explosive Atmospheres
  • Health and Safety Awareness
  • Hearing Protection
  • Heat and Flame
  • Lighting and ATEX
  • Noise Monitoring
  • Personal Protective Equipment
  • Respiratory Protection
  • Safety Footwear
  • Safety Technology
  • Safety Training
  • Slips, Trips and Falls
  • Wellbeing at Work
  • White Papers
  • Working at Height
  • Working Rights

Article

Detecting Hazardous Gases

By Graeme Lawrie

| Read Bio

Published: November 05th, 2020

Share this article

Gases are used extensively around the globe, but many of their properties have the potential to cause harm to both people and the environment if they are not managed effectively.

Gases can be; flammable and therefore lead to fire and explosion, they can be asphyxiants and they can cause other occupational health related problems (asthma/lung sensitisation, skin irritation and soft tissue damage). Gases are used in many industrial processes, but gases may also be produced as an unwanted by-product in some activities (oil production, refining and chemical manufacturing). In all cases it is very important that these processes are managed professionally to eliminate harmful gas leaks. Where it is not practicable to eliminate the risk of a gas leak then the organisation must take steps to effectively mitigate the risks from these escaped gases. In this article we will focus on the steps that can be taken to minimise these risks, particularly around the use of gas detectors.

Istock 1224034093 - hsi -

Harmful gases and their characteristics

Some of the most common gases produced are carbon monoxide, chlorine, hydrogen fluoride, hydrogen sulphide, ammonia and flammable substances (natural gas). Typically, these gases are found in the production of iron and steel, chemicals and petrochemicals, oil refining, natural gas sourcing, refrigeration and water treatment.

It is important to be able to detect some gases, such as those which are toxic or flammable, more urgently than others. There are a number of factors that affect the need for speed of detection:

  • Type of gas
  • Temperature, pressure, quantity and toxicity
  • Proximity to employees and public
  • The effectiveness of counteractive measures taken against it
  • The speed and effectiveness of medical intervention

Certain environments require much more finely tuned methods of detection and protection, as a leak would have much greater ramifications; for example, petrochemical plants carry a high risk of gas leakage, which can lead to explosion or fire that not only damages equipment, but puts lives at serious risk. Meanwhile, nuclear power stations use gases, such as CO2, as coolants to transfer heat to generate steam and to prevent reactors overheating. Any loss of CO2 could reduce the efficiency of heat removal and cause overheating. In both of these situations, gas detectors are used not only to keep the process going, but to keep people safe by detecting any gas releases.

Istock 1278996003 - hsi -

The coke produced in making iron and steels gives off carbon monoxide. Process fluids or solvents produced in the chemical and petrochemical industries can be extremely flammable themselves, as can the actual chemicals used in the processes, like chlorine or benzene.

Oil refining hazards include hydrogen sulphide, hydrofluoric acid and other flammability issues, while the oil and gas drilling industry is also extremely hazardous. Disasters in recent years expose the need for prior warning systems that pick up even the most minute escape of gas.

Some gases are used for fire suppression and inert blanketing, like nitrogen and CO2. Some oil storage tanks have a blanket of nitrogen sitting on top of the fluids to minimise the risk of a fire starting. Nitrogen and CO2 are asphyxiants and must be handled with great care. Many sensitive electronic systems are protected by N2 and C02 suppression systems. The gases can extinguish fires by displacing oxygen with non-flammable gases. The gases do not damage the electronic systems the way that water or powder might. I once investigated an incident in a record keeping organisation where the CO2 drench system was activated by mistake. There were people in the storage rooms that were being flooded with gas. In this case everyone was able to escape safely, but this is a considerable risk. As CO2 is much heavier than ambient air, we had to check very carefully for potential “pockets” of CO2 which had not dispersed naturally. Forced ventilation was brought in to ensure all areas were made safe.

“the location and sensitivity of a detector will depend on where the gas is likely to escape from and when”

Gas leaks

Any system which uses, generates or contains a gas under pressure can develop leaks. But the significance a leak has on the business’s ability to maintain normal activities will depend on the type of gas being used, its pressure and temperature, any products or reactions generated by the process, where the leak is located, and the quantity of gas that could be released.

The location and sensitivity of a detector will depend on where the gas is likely to escape from and when. Although leaks are the result of a host of issues, the most frequent causes are human error, corrosion (internal and external), wear or faulty equipment, poor maintenance, or accelerated chemical reactions that increase pressure.

The risk management process for selecting gas detection often involves gas dispersion modelling, using likely locations where the substance could escape as a template. Varying densities, volumes, and temperatures of the gas are tested, along with differing weather conditions, to find out how the gas cloud is likely to form and disperse in the event of a leak. A change in atmospheric conditions can have profound effects, as highlighted in a recent gas explosion I investigated. A well workover team were replacing downhole monitoring systems and as part of the process were producing quantities of natural gas back to the surface. This work was being conducted in a large flat plain where there was a constant breeze blowing.

It is likely that the crew was not aware that this breeze was dissipating any natural gas that was escaping and preventing it from ever reaching a lower flammable / explosive limit. However, one summer evening the breeze stopped and the air was very still, now escaping natural gas was able to pool and eventually find a source of ignition. Of course you cannot and should not use the weather as a protection factor, but the significance here was the major impact that occurred because of a small change in weather conditions. So the impact of the weather should be considered as part of the risk management process.

Istock 149145010 - hsi -

‘Hazops’ – hazard and operability studies – may also be used to examine a company’s equipment and its operation, to determine the possible points at which gas may be released.

Wear and tear is often related to poor inspection processes and inadequate maintenance. Failed pipe work, poor piping joints, leaking pumps or valve seals, and vents and drains can become the culprits if they are not kept in good condition.

Some types of gas can also cause issues in enclosed spaces and workers can find themselves in a situation where the atmosphere can’t support breathing, so gas detection will be a part of the risk reduction measures.

Workers must be fully aware of all the gases used, produced, or discharged in the areas where they work. Working in an enclosed / confined environment is a specific hazard and must be very strictly controlled, particularly if gases may be present.

For example, even a task as seemingly harmless as setting concrete gives off carbon dioxide, which can act as an asphyxiant in the right conditions. Organic food or waste can remove oxygen, producing hydrogen and methane as it decomposes, and process plants like oil refineries can release toxic gases such a Hydrogen Fluoride and flammable hydrocarbons.

Gas detection methods

Most systems can be broken down into two categories – fixed and portable.

Portable electronic personal gas detection monitors allow an individual to work in a potentially hazardous area, by sounding a warning alarm when the gas rises to an unsafe level and action must be taken. These safe working levels are often defined in national legislation, international trade associations and manufacturers safety data information. Be careful to check the valid levels for the specific country or region you are working in as there may be some small variations in levels from country to country.

“workers must be fully aware of all the gases used, produced, or discharged in the areas where they work”

Portable detection is used to help workers undertaking tasks such as maintenance, where employees might disturb or release gas that wouldn’t normally be detectable in that environment. One example here would be people cleaning out degreasing tanks (Trichloroethylene). The gas is often absorbed in the greasy residue on the bottom of the tank, however, when a worker starts to disturb the residue to collect it to remove it, the gas vapours can be given off and as it is heavier than air, it could collect in the breathing zone of the worker. A personal gas detector could be used to detect small quantities of gas vapour and action can be taken before it becomes hazardous to the worker. Portable devices can also be used for sampling, where workers need to measure the quality of the atmosphere before entering an area. But again, as stated above, the sampling atmosphere may be fine before the person goes to work, but it could soon become hazardous once work begins, so it is important to understand when sampling gas testing is appropriate and where continual sampling is required. This is very much part of the risk management process.

Fixed systems are preferred in process safety and static systems where the layout is more constant. In refineries for example where the risks associated with gas leaks are known and constant. Fixed systems tend to protect and entire area or process and provide a warning to many people, not just the individual wearing a portable monitor. The position / placement and type of fixed monitor used will depend on many factors, for example if the gas is heavier than air then the monitor would need to be below the leak point. If they are used outside, they may need to be very close to the potential leak point to ensure that the ambient weather conditions do not dissipate the gas before detection. Perhaps the most common types of fixed gas detection devices are smoke alarms and carbon monoxide detectors. Smoke alarms are generally placed on the ceiling in proximity to kitchen devices as the smoke will generally rise quickly due to the heat generated. Carbon monoxide monitors are more likely placed at “head height”, the breathing zone of the people potentially affected.

Istock 187164792 - hsi -

Another advantage of fixed gas detection is that the gas detector will monitor an area constantly, so that if an operator is not present full time, the gas leak will still be detected and the appropriate emergency response can be undertaken.

Gas detection outside requires many detectors to provide blanket coverage across a wide area around a plant or a release point. This is because without the restriction of building walls and structures, the gas can escape in any direction depending on wind and weather conditions at the time. In these circumstances, gas detectors can cover a number of typically predictable sources of leak, such as corrosion points, sampling points which might get left open by human error, and road, rail or marine loading and unloading locations.

The sensitivity of the gas detection device must reflect a substance’s lower explosive limit or toxic levels, to give early warning of any danger.

“the sensitivity of the gas detection device must reflect a substance’s lower explosive limit or toxic levels, to give early warning of any danger”

Expect the unexpected

There are three principal considerations to manage:

  • Process control – To ensure that the presence, pressure, reactions and concentration of any harmful gases are controlled so that the gases do not escape into the environment
  • Loss prevention – Implementation of robust design, maintenance, inspection, and corrosion prevention to ensure that gases are contained
  • Loss preparedness – Gas detection and process monitoring to identify the loss of gas if it occurs and suitable emergency arrangements to protect those who may be affected

If gas does leak then early detection is key. Automated systems have reached a level of maturity now where if gas is detected then entire systems can be shut off automatically to prevent any further escape. Of course you do not want to shut down a plant because of a defective monitor / detector, so systems will often have three independent detectors and allow a voting system to make the decision. If one detector activates and two do not, the system may not go into automatic shutdown but rather prompt the operator to investigate the tripped alarm. Of course this alarm must always be treated as genuine until the operator can confirm that it was spurious. If two detectors trip then the voting system would vote 2 to 1 to shut down.

Some systems will still prompt an operator action to shut down a process or part of a process. This is most common in systems when hazards can be created by shutting down (e.g. cooling systems) you don’t want to minimise one risk but create a worse one. In many complex plants systems (parts of systems) can be shut down centrally (control room) or locally on site.

“this article will focus on the steps that can be taken to minimise risks around the use of gas detectors”

Employee training

Basic training for workers in the hazardous industries takes two forms – an operational response in the event of an alarm, and an emergency response to limit the spread, or the effect of gas that has already escaped.

Various training programmes exist for the design, installation and operation of detectors. Employees also get general training on how to work in a hazardous environment, and what to do if there is a leak to avoid asphyxiation, injuries from explosion of fire, or skin damage due to toxicity.

Anyone working in confined spaces will also receive training in detection and assessment of the gas types present. Testers working in these conditions will obviously be trained in the specific detection equipment they are using.

When workers arrive on a potentially hazardous site, the detailed safety induction training will highlight how to behave in an emergency. The sounds of the different alarms, what they mean, and how to respond. Safe routes and mustering points will be identified. In the case of a gas like H2S personnel will be advised to don emergency escape respirators and make their way upwind to a place of safety. Plant with an H2S risk will usually have a high-vis windsock to help people to identify the safe upwind direction. An escape respirator will normally have a short duration usage as it is only intended to provide enough time to reach a place of safety. It should not be used to effect a recovery or rescue. Specially trained emergency responders will normally be provided with full face mask self-contained breathing apparatus. The personal involved in continuous gas detection may well be members of this specialised response team.

If fire and explosion is a significant hazard then additional PPE would be required for example anti-flash suits and intrinsically safe equipment. Part of the training process to prevent and deal with potential disaster involves regular emergency response practice – this includes testing alarms and carrying out dummy evacuations.

Share this article

ABOUT THE AUTHOR

Graeme Lawrie

BSc Hons Topographic Science, University of Glasgow. Post Graduate Diploma in Health and Safety, Aston University. MA International Relations, Staffordshire University. Member of the Institute of Explosive Engineers. Chartered Member of the Institute of Occupational Safety and Health (since 1988). Chairman of the International Oil and Gas. Producers Lifting and Hoisting Task Force. Member of the Society or Petroleum Engineers. HSE Advisory Committee Working for OMV GmbH (2010 – current) as Senior Expert Investigation and Analysis, located in Vienna, Austria. He was previously Upstream. Division HSSE Manager for OMV QHSE Management roles for Schlumberger Oilfield Services (1998 – 2010), including Alaska, North Sea, Russia and Texas. HM Inspector of Health and Safety (1986 –
1998). Predominantly based in London. Part time HSSE Consultant to the Bahrain Petroleum Company (1990 to 2010)

Connect with Graeme Lawrie

POPULAR POSTS BY Graeme Lawrie

Istock 155444633 - hsi -

Article

Detecting Hazardous Gases

Istock 927915726 0 248 1688 3000 - hsi -

Article

Lifting and Hoisting Operations

Get email updates

Sign up for the HSI newsletter

Keep up-to-date through the power of email with Europe's largest audited safety magazine - delivering the latest news and products to satisfy all your occupational safety needs.

  • This field is for validation purposes and should be left unchanged.

FEATURED ARTICLES

Article

 Thameslink Traffic Management Programme

Press Release

‘Working At Height’ Remains Biggest Danger

Press Release

“Uncertainty and Ignorance” Risks More Asbestos Deaths

Advertisement

SOCIAL MEDIA

HSI on Facebook

https://www.facebook.com/HSIMagazine/

Advertisement

SOCIAL MEDIA

HSI on Twitter

hsimagazine HSI Magazine @hsimagazine ·
15h

Meet our first featured speaker...

Save my seat: https://us06web.zoom.us/webinar/register/7316793994535/WN_m7lbVevnQRiAHDK6KkxX-g

#hsimagazine #GasDetectionSummit #summit #gasdetection #gassafety #speakerlaunch

Reply on Twitter 1640277486566248450 Retweet on Twitter 1640277486566248450 Like on Twitter 1640277486566248450 1 Twitter 1640277486566248450

Advertisement

SUBSCRIBE

Stay up to date with our newsletter

    • Keep up-to-date with Europe’s largest audited safety magazine

 

    • Delivering the latest news and products to satisfy all your occupational safety needs

 

This field is for validation purposes and should be left unchanged.

Subscribe

SUBSCRIBE TO HSI MAGAZINE

5 reasons to subscribe to our digital and print package

  • Stay up to date from anywhere in the world, with instant access to the latest issue straight from your phone, tablet or laptop.
  • Trust that you’re getting the best content from our range of internationally accredited authors.
  • Get full access to our archives and see how occupational safety has evolved with us over the years.
  • Enjoy our monthly newsletter curated with up-to-the-minute news and a selection of editor’s top picks.
  • Hot off the press and straight to your door – look forward to your own glossy copy of HSI, delivered five times a year
Subscribe View Subscription levels

STAY SAFE & INFORMED

Subscribe to the best health & safety articles, news, products and regulations

Find out more

Stay up to date with our newsletter

  • This field is for validation purposes and should be left unchanged.

ABOUT

  • About HSI International
  • Advertise
  • Contact Us

YOUR ACCOUNT

Sign In Register Account Subscribe to HSI

RESOURCES

Request Media Pack

CONNECT

ACCREDITATIONS

Copyright Bay Publishing 2023. All Rights reserved.

Designed & Built by:
  • Terms & Conditions
  • Privacy Policy
  • Cookie Policy
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT